Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.245
1.
Int J Gen Med ; 17: 1635-1649, 2024.
Article En | MEDLINE | ID: mdl-38706742

Kidney stones refer to abnormal crystal formation that occurs in the kidney. Among a variety of components of kidney stones, calcium oxalate (CaOx) is the most common type. Despite many efforts to investigate the pathogenesis of CaOx stones, the pathogenesis remains an issue of debate. With high occurrence and recurrence, individuals with stone formation are prone to frequently consult a doctor and to be hospitalized, and the treatment of kidney stones poses a heavy burden on the patients. Concerns should be focused not only on treatment but also on prevention. Herein, we reviewed the studies on prevention methods of CaOx stones through diet, lifestyle, and medication extending until the current time frame. As hyperoxaluria is the most common metabolic disorder among CaOx stone formations, we also included several studies on the treatment and prevention of hyperoxaluria. Our objective was to outline the effective methods to prevent renal CaOx stone formation.

2.
FEBS Open Bio ; 2024 May 06.
Article En | MEDLINE | ID: mdl-38710666

The regenerative capability of the liver is remarkable, but further research is required to understand the role that neutrophils play in this process. In the present study, we reanalyzed single-cell RNA sequencing data from a mouse partial hepatectomy (PH) model to track the transcriptional changes in hepatocytes and non-parenchymal cells. Notably, we unraveled the regenerative capacity of hepatocytes at diverse temporal points after PH, unveiling the contributions of three distinct zones in the liver regeneration process. In addition, we observed that the depletion of neutrophils reduced the survival and liver volume after PH, confirming the important role of neutrophils in liver regeneration. CellChat analysis revealed an intricate crosstalk between neutrophils and macrophages promoting liver regeneration and, using weighted gene correlation network analysis, we identified the most significant genetic module associated with liver regeneration. Our study found that hepatocytes in the periportal zone of the liver are more active than in other zones, suggesting that the crosstalk between neutrophils and macrophages might be a potential target for liver regeneration treatment.

3.
Langmuir ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38712734

Bouncing dynamics of a trailing drop off-center impacting a leading drop with varying time intervals and Weber numbers are investigated experimentally. Whether the trailing drop impacts during the spreading or receding process of the leading drop is determined by the time interval. For a short time interval of 0.15 ≤ Δt* ≤ 0.66, the trailing drop impacts during the spreading of the leading drop, and the drops completely coalesce and rebound; for a large time interval of 0.66 < Δt* ≤ 2.21, the trailing drop impacts during the receding process, and the drops partially coalesce and rebound. Whether the trailing drop directly impacts the surface or the liquid film of the leading drop is determined by the Weber number. The trailing drop impacts the surface directly at moderate Weber numbers of 16.22 ≤ We ≤ 45.42, while it impacts the liquid film at large Weber numbers of 45.42 < We ≤ 64.88. Intriguingly, when the trailing drop impacts the surface directly or the receding liquid film, the contact time increases linearly with the time interval but independent of the Weber number; when the trailing drop impacts the spreading liquid film, the contact time suddenly increases, showing that the force of the liquid film of the leading drop inhibits the receding of the trailing drop. Finally, a theoretical model of the contact time for the drops is established, which is suitable for different impact scenarios of the successive off-center impact. This study provides a quantitative relationship to calculate the contact time of drops successively impacting a superhydrophobic surface, facilitating the design of anti-icing surfaces.

4.
Article En | MEDLINE | ID: mdl-38695117

Aqueous zinc-ion batteries (ZIBs) are regarded as a type of promising energy-storage device because of their high safety and low cost, and polyaniline (PANI) is normally employed as a cathode material for ZIBs owing to its unique electrochemical properties and high environmental stability. However, a low specific capacity and a short cycle life limit the development and applications of PANI-based electrodes. Herein, we have developed a novel type of highly stable PANI-based cathode material enabled by phosphene (PR) for aqueous Zn-PANI batteries through in situ chemical oxidative polymerization. The introduction of PR nanoflakes not only inhibits the degradation of PANI and generates more active sites for Zn2+ storage but also enables a synergistic effect of the Zn2+ insertion/extraction and P-Zn alloying reaction. This promotes a high reversible specific capacity of 240.2 mAh g-1 at 0.2 A g-1 and excellent rate performance for the PR/PANI nanocomposite cathode material. Compared to the pristine PANI cathode material, the PR/PANI nanocomposite cathode material is more suitable for the Zn-PANI battery, thanks to its higher specific capacity and better cycle stability. This study provides an innovative approach for developing the next generation of reliable PR-based electrode materials for aqueous energy-storage devices.

5.
Heliyon ; 10(7): e26474, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38689967

Corporate procurement management assumes a pivotal role within the contemporary business landscape, yet confronts an array of challenges as markets continue to evolve and globalize. Conventional procurement management systems frequently grapple with issues of inefficiency, resource depletion, and noncompliance, necessitating the exploration of innovative avenues for optimization. This paper delves into the realm of risk mitigation associated with collusion behavior in the administration of intelligent procurement systems, presenting a novel procurement collusion identification model founded on a convolutional neural network (CNN) with reinforcement learning techniques. This framework commences with the application of a CNN and Long Short-Term Memory (LSTM) network for in-depth feature analysis and initial identification of historical procurement data, subsequently leveraging reinforcement learning methodologies to enhance the model's autonomy and intelligence for the purpose of optimization. Throughout the experimental phase, diverse domains of procurement data were meticulously selected for analysis. The empirical findings unequivocally demonstrate the model's proficiency, with an average recognition accuracy of 95.1% across five publicly available datasets. This performance surpasses existing machine learning methodologies employed in contemporary research and common recognition networks, thereby offering a pioneering reference point for the intelligent administration and optimization of future procurement systems.

6.
Cytotechnology ; 76(3): 351-361, 2024 Jun.
Article En | MEDLINE | ID: mdl-38736728

Pancreatic cancer is difficult to manage owing to the challenges involved in its treatment and nursing. This study aimed to clarify the roles and mechanisms of action of Poly (A)-binding protein cytoplasmic 1 (PABPC1) on pancreatic cancer. The expression of PABPC1 in pancreatic cancer tissues and cell lines was detected using RT-qPCR and western blotting. The effects of PABPC1 on proliferation, apoptosis, epithelial-mesenchymal transition (EMT), and the PI3K/AKT signaling pathway in pancreatic cancer cells were further investigated using MTT assays, flow cytometry, and western blotting. The expression of PABPC1 was significantly upregulated in pancreatic cancer tissues and cells, whereas PABPC1 downregulation inhibited pancreatic cancer cell proliferation, induced apoptosis, decreased the expression of EMT-associated proteins, and exerted a regulatory effect by inhibiting the PI3K/AKT signaling pathway. In addition, the findings indicated that PABPC1 over-expression significantly promoted pancreatic cancer cell proliferation, inhibited apoptosis, decreased the expression of E-cadherin, enhanced N-cadherin expression, and activating the PI3K/AKT signaling pathway. PABPC1 silencing significantly inhibited proliferation and EMT and induced apoptosis in pancreatic cancer cells. These findings provide novel insights into the role of PABPC1 in the development of pancreatic cancer. Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-024-00626-1.

7.
Sensors (Basel) ; 24(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38732862

Online monitoring and real-time feedback on inclusions in molten metal are essential for metal quality control. However, existing methods for detecting aluminum melt inclusions face challenges, including interference, prolonged processing times, and latency. This paper presents the design and development of an online monitoring system for molten metal inclusions. Initially, the system facilitates real-time adjustment of signal acquisition parameters through a multiplexer. Subsequently, it employs a detection algorithm capable of swiftly extracting pulse peaks, with this task integrated into our proprietary host computer software to ensure timely detection and data visualization. Ultimately, we developed a monitoring device integrated with this online monitoring system, enabling the online monitoring of the aluminum alloy filtration process. Our findings indicate that the system can accurately measure the size and concentration of inclusions during the filtration process in real time, offering enhanced detection speed and stability compared to the industrial LiMCA CM (liquid metal cleanliness analyzer continuous monitoring) standard. Furthermore, our evaluation of the filtration process demonstrates that the effectiveness of filtration significantly improves with the increase in inclusion sizes, and the synergistic effect of combining CFF (ceramic foam filter) and MCF (metallics cartridge filter) filtration methods exceeds the performance of the CFF method alone. This system thus provides valuable technical support for optimizing filtration processes and controlling inclusion quality.

8.
Sensors (Basel) ; 24(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38732873

Traditional methods for assessing the cleanliness of liquid metal are characterized by prolonged detection times, delays, and susceptibility to variations in sampling conditions. To address these limitations, an online cleanliness-analyzing system grounded in the method of the electrical sensing zone has been developed. This system facilitates real-time, in situ, and quantitative analysis of inclusion size and amount in liquid metal. Comprising pneumatic, embedded, and host computer modules, the system supports the continuous, online evaluation of metal cleanliness across various metallurgical processes in high-temperature environments. Tests conducted with gallium liquid at 90 °C and aluminum melt at 800 °C have validated the system's ability to precisely and quantitatively detect inclusions in molten metal in real time. The detection procedure is stable and reliable, offering immediate data feedback that effectively captures fluctuations in inclusion amount, thereby meeting the metallurgical industry's demand for real-time analyzing and control of inclusion cleanliness in liquid metal. Additionally, the system was used to analyze inclusion size distribution during the hot-dip galvanizing process. At a zinc melt temperature of 500 °C, it achieved a detection limit of 21 µm, simultaneously providing real-time data on the size and amount distribution of inclusions. This represents a novel strategy for the online monitoring and quality control of zinc slag throughout the hot-dip galvanizing process.

9.
Aging (Albany NY) ; 16(8): 7141-7152, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38643465

Disrupted mitochondrial dynamics and mitophagy contribute to functional deterioration of skeletal muscle (SM) during aging, but the regulatory mechanisms are poorly understood. Our previous study demonstrated that the expression of thyroid hormone receptor α (TRα) decreased significantly in aged mice, suggesting that the alteration of thyroidal elements, especially the decreased TRα, might attenuate local THs action thus to cause the degeneration of SM with aging, while the underlying mechanism remains to be further explored. In this study, decreased expression of myogenic regulators Myf5, MyoD1, mitophagy markers Pink1, LC3II/I, p62, as well as mitochondrial dynamic factors Mfn1 and Opa1, accompanied by increased reactive oxygen species (ROS), showed concomitant changes with reduced TRα expression in aged mice. Further TRα loss- and gain-of-function studies in C2C12 revealed that silencing of TRα not only down-regulated the expression of above-mentioned myogenic regulators, mitophagy markers and mitochondrial dynamic factors, but also led to a significant decrease in mitochondrial activity and maximum respiratory capacity, as well as more mitochondrial ROS and damaged mitochondria. Notedly, overexpression of TRα could up-regulate the expression of those myogenic regulators, mitophagy markers and mitochondrial dynamic factors, meanwhile also led to an increase in mitochondrial activity and number. These results confirmed that TRα could concertedly regulate mitochondrial dynamics, autophagy, and activity, and myogenic regulators rhythmically altered with TRα expression. Summarily, these results suggested that the decline of TRα might cause the degeneration of SM with aging by regulating mitochondrial dynamics, mitophagy and myogenesis.


Aging , Mitophagy , Muscle, Skeletal , Reactive Oxygen Species , Sarcopenia , Thyroid Hormone Receptors alpha , Animals , Sarcopenia/metabolism , Sarcopenia/pathology , Mice , Thyroid Hormone Receptors alpha/genetics , Thyroid Hormone Receptors alpha/metabolism , Aging/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Reactive Oxygen Species/metabolism , Mitochondria, Muscle/metabolism , Male , Mitochondrial Dynamics , Mitochondria/metabolism , Cell Line
10.
Biology (Basel) ; 13(4)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38666826

Grass carp (Ctenopharyngodon idella) and barbel chub (Squaliobarbus curriculus)-both Leuciscinae subfamily species-demonstrate differences in grass carp reovirus (GCRV) infection resistance. We infected barbel chubs with type II GCRV and subjected their liver, spleen, head kidney, and trunk kidney samples to investigate anti-GCRV immune mechanisms via RNA sequencing and quantitative real-time polymerase chain reaction (qRT-PCR). We identified 139, 970, 867, and 2374 differentially expressed genes (DEGs) in the liver, spleen, head kidney, and trunk kidney, respectively. Across all four tissues, gene ontology analysis revealed significant immune response-related DEG enrichment, and the Kyoto Encyclopedia of Genes and Genomes analysis revealed pattern recognition receptor (PRR) and cytokine-related pathway enrichment. We noted autophagy pathway enrichment in the spleen, head kidney, and trunk kidney; apoptosis pathway enrichment in the spleen and trunk kidney; and complement- and coagulation-cascade pathway enrichment in only the spleen. Comparative transcriptome analysis between GCRV-infected barbel chubs and uninfected barbel chubs comprehensively revealed that PRR, cytokine-related, complement- and coagulation-cascade, apoptosis, and autophagy pathways are potential key factors influencing barbel chub resistance to GCRV infection. qRT-PCR validation of 11 immune-related DEGs confirmed our RNA-seq data's accuracy. These findings provide a theoretical foundation and empirical evidence for the understanding of GCRV infection resistance in barbel chub and hybrid grass carp-barbel chub breeding.

12.
Cell Death Discov ; 10(1): 186, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649363

Neuroblastoma (NB) is a common childhood tumor with a high incidence worldwide. The regulatory role of RNA N6-methyladenosine (m6A) in gene expression has attracted significant attention, and the impact of methyltransferase-like 14 (METTL14) on tumor progression has been extensively studied in various types of cancer. However, the specific influence of METTL14 on NB remains unexplored. Using data from the Target database, our study revealed significant upregulation of METTL14 expression in high-risk NB patients, with strong correlation with poor prognosis. Furthermore, we identified ETS1 and YY1 as upstream regulators that control the expression of METTL14. In vitro experiments involving the knockdown of METTL14 in NB cells demonstrated significant inhibition of cell proliferation, migration, and invasion. In addition, suppressing METTL14 inhibited NB tumorigenesis in nude mouse models. Through MeRIP-seq and RNA-seq analyses, we further discovered that YWHAH is a downstream target gene of METTL14. Mechanistically, we observed that methylated YWHAH transcripts, particularly those in the 5' UTR, were specifically recognized by the m6A "reader" protein YTHDF1, leading to the degradation of YWHAH mRNA. Moreover, the downregulation of YWHAH expression activated the PI3K/AKT signaling pathway, promoting NB cell activity. Overall, our study provides valuable insights into the oncogenic effects of METTL14 in NB cells, highlighting its role in inhibiting YWHAH expression through an m6A-YTHDF1-dependent mechanism. These findings also suggest the potential utility of a biomarker panel for prognostic prediction in NB patients.

13.
J Pediatr (Rio J) ; 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38677322

OBJECTIVE: Platelet to albumin ratio (PAR) and prognostic nutritional index (PNI) are potential indicators for evaluating nutritional and inflammatory status. This study aimed to examine the relationship between PAR and PNI and the acute complicated course of acute hematogenous osteomyelitis (AHO). METHODS: AHO patients were divided into the simple course group and the acute complicated course group. The patient's gender, age, site of infection, body temperature, laboratory results, and pathogen culture results were collected and compared. Multivariate logistic regression analysis was used to determine the independent risk factors of the acute complicated course group. The receiver operating characteristic curve was applied to determine the optimal cut-off value. RESULTS: In total, 101 AHO patients with a median age of 7.58 years were included. There were 63 cases (62.4 %) in the simple course group and 38 cases (37.6 %) in the complicated course group. Binary logistic regression analysis revealed that PAR and PNI were independent risk factors for predicting the acute complicated course of AHO (p = 0.004 and p < 0.001, respectively). Receiver operating characteristic curve analysis demonstrated that the combination of PAR and PNI had an area under the curve of 0.777 (95 % CI: 0.680-0.873, p < 0.001) with a cut-off value of 0.51. CONCLUSIONS: The incidence of acute complicated courses was significantly higher in patients with high PAR and low PNI. A combined factor greater than 0.51, derived from PAR and PNI measurements within 24 h of admission, may be useful for predicting AHO patients who are likely to develop severe disease.

14.
Cancer Lett ; 591: 216882, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38636893

Super enhancers (SEs) are genomic regions comprising multiple closely spaced enhancers, typically occupied by a high density of cell-type-specific master transcription factors (TFs) and frequently enriched in key oncogenes in various tumors, including neuroblastoma (NB), one of the most prevalent malignant solid tumors in children originating from the neural crest. Cyclin-dependent kinase 5 regulatory subunit-associated protein 3 (CDK5RAP3) is a newly identified super-enhancer-driven gene regulated by master TFs in NB; however, its function in NB remains unclear. Through an integrated study of publicly available datasets and microarrays, we observed a significantly elevated CDK5RAP3 expression level in NB, associated with poor patient prognosis. Further research demonstrated that CDK5RAP3 promotes the growth of NB cells, both in vitro and in vivo. Mechanistically, defective CDK5RAP3 interfered with the UFMylation system, thereby triggering endoplasmic reticulum (ER) phagy. Additionally, we provide evidence that CDK5RAP3 maintains the stability of MEIS2, a master TF in NB, and in turn, contributes to the high expression of CDK5RAP3. Overall, our findings shed light on the molecular mechanisms by which CDK5RAP3 promotes tumor progression and suggest that its inhibition may represent a novel therapeutic strategy for NB.

15.
Nat Commun ; 15(1): 3220, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622115

Induced oncoproteins degradation provides an attractive anti-cancer modality. Activation of anaphase-promoting complex (APC/CCDH1) prevents cell-cycle entry by targeting crucial mitotic proteins for degradation. Phosphorylation of its co-activator CDH1 modulates the E3 ligase activity, but little is known about its regulation after phosphorylation and how to effectively harness APC/CCDH1 activity to treat cancer. Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1)-catalyzed phosphorylation-dependent cis-trans prolyl isomerization drives tumor malignancy. However, the mechanisms controlling its protein turnover remain elusive. Through proteomic screens and structural characterizations, we identify a reciprocal antagonism of PIN1-APC/CCDH1 mediated by domain-oriented phosphorylation-dependent dual interactions as a fundamental mechanism governing mitotic protein stability and cell-cycle entry. Remarkably, combined PIN1 and cyclin-dependent protein kinases (CDKs) inhibition creates a positive feedback loop of PIN1 inhibition and APC/CCDH1 activation to irreversibly degrade PIN1 and other crucial mitotic proteins, which force permanent cell-cycle exit and trigger anti-tumor immunity, translating into synergistic efficacy against triple-negative breast cancer.


Cell Cycle Proteins , Proteomics , Cell Cycle/physiology , Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Phosphorylation , Protein Stability , NIMA-Interacting Peptidylprolyl Isomerase/genetics , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Mitosis
16.
Article En | MEDLINE | ID: mdl-38658737

Trace amine-associated receptor 1 (TAAR1) is an intracellular expressed G-protein-coupled receptor that is widely expressed in major dopaminergic areas and plays a crucial role in modulation of central dopaminergic neurotransmission and function. Pharmacological studies have clarified the roles of dopamine D1 receptor (D1R) in the medial prefrontal cortex (mPFC) in cognitive function and social behaviors, and chronic stress can inhibit D1R expression due to its susceptibility. Recently, we identified TAAR1 in the mPFC as a potential target for treating chronic stress-induced cognitive and social dysfunction, but whether D1R is involved in mediating the effects of TAAR1 agonist remains unclear. Combined genomics and transcriptomic studies revealed downregulation of D1R in the mPFC of TAAR1-/- mice. Molecular dynamics simulation showed that hydrogen bond, salt bridge, and Pi-Pi stacking interactions were formed between TAAR1 and D1R indicating a stable TAAR1-D1R complex structure. Using pharmacological interventions, we found that D1R antagonist disrupted therapeutic effect of TAAR1 partial agonist RO5263397 on stress-related cognitive and social dysfunction. Knockout TAAR1 in D1-type dopamine receptor-expressing neurons reproduced adverse effects of chronic stress, and TAAR1 conditional knockout in the mPFC led to similar deficits, along with downregulation of D1R expression, all of these effects were ameliorated by viral overexpression of D1R in the mPFC, suggesting the functional interaction between TAAR1 and D1R. Collectively, our data elucidate the possible molecular mechanism that D1R in the mPFC mediates the effects of TAAR1 activation on chronic stress-induced cognitive and social deficits.

17.
Comput Methods Programs Biomed ; 249: 108159, 2024 Jun.
Article En | MEDLINE | ID: mdl-38583291

BACKGROUND AND OBJECTIVE: Colorectal cancer (CRC) is one of the most commonly diagnosed cancers worldwide. The accurate survival prediction for CRC patients plays a significant role in the formulation of treatment strategies. Recently, machine learning and deep learning approaches have been increasingly applied in cancer survival prediction. However, most existing methods inadequately represent and leverage the dependencies among features and fail to sufficiently mine and utilize the comorbidity patterns of CRC. To address these issues, we propose a self-attention-based graph learning (SAGL) framework to improve the postoperative cancer-specific survival prediction for CRC patients. METHODS: We present a novel method for constructing dependency graph (DG) to reflect two types of dependencies including comorbidity-comorbidity dependencies and the dependencies between features related to patient characteristics and cancer treatments. This graph is subsequently refined by a disease comorbidity network, which offers a holistic view of comorbidity patterns of CRC. A DG-guided self-attention mechanism is proposed to unearth novel dependencies beyond what DG offers, thus augmenting CRC survival prediction. Finally, each patient will be represented, and these representations will be used for survival prediction. RESULTS: The experimental results show that SAGL outperforms state-of-the-art methods on a real-world dataset, with the receiver operating characteristic curve for 3- and 5-year survival prediction achieving 0.849±0.002 and 0.895±0.005, respectively. In addition, the comparison results with different graph neural network-based variants demonstrate the advantages of our DG-guided self-attention graph learning framework. CONCLUSIONS: Our study reveals that the potential of the DG-guided self-attention in optimizing feature graph learning which can improve the performance of CRC survival prediction.


Colorectal Neoplasms , Machine Learning , Humans , Neural Networks, Computer , Postoperative Period , ROC Curve
18.
Acta Pharm Sin B ; 14(4): 1605-1623, 2024 Apr.
Article En | MEDLINE | ID: mdl-38572102

Immune-mediated liver injury (ILI) is a condition where an aberrant immune response due to various triggers causes the destruction of hepatocytes. Fibroblast growth factor 4 (FGF4) was recently identified as a hepatoprotective cytokine; however, its role in ILI remains unclear. In patients with autoimmune hepatitis (type of ILI) and mouse models of concanavalin A (ConA)- or S-100-induced ILI, we observed a biphasic pattern in hepatic FGF4 expression, characterized by an initial increase followed by a return to basal levels. Hepatic FGF4 deficiency activated the mitochondria-associated intrinsic apoptotic pathway, aggravating hepatocellular apoptosis. This led to intrahepatic immune hyper-reactivity, inflammation accentuation, and subsequent liver injury in both ILI models. Conversely, administration of recombinant FGF4 reduced hepatocellular apoptosis and rectified immune imbalance, thereby mitigating liver damage. The beneficial effects of FGF4 were mediated by hepatocellular FGF receptor 4, which activated the Ca2+/calmodulin-dependent protein kinasekinase 2 (CaMKKß) and its downstream phosphatase and tensin homologue-induced putative kinase 1 (PINK1)-dependent B-cell lymphoma 2-like protein 1-isoform L (Bcl-XL) signalling axis in the mitochondria. Hence, FGF4 serves as an early response factor and plays a protective role against ILI, suggesting a therapeutic potential of FGF4 and its analogue for treating clinical immune disorder-related liver injuries.

19.
Water Environ Res ; 96(5): e11034, 2024 May.
Article En | MEDLINE | ID: mdl-38685723

The research on the deviations caused by different resolutions is relevant to the study of spatial scale effects. In 2018, spatial interpolations were performed using the removal ratios of the TN, NH4-N, and NO3-N of the layers of different resolutions, respectively. Based on the mean and the standard deviation, the area, shape, and position were obtained for four levels related to the removal ratios of the three nitrogen forms. The linear and 6th function fitting methods were used to reveal the differences in nitrogen removal in wetland water at different spatial resolutions. The results showed that a resolution of 25 times the original was the key scale of the spatial effects. Due to the fact that 52 of the 72 functions did not reach a significant level (P < 0.05), the spatial scale effect of the nitrogen removal was mainly characterized by disorderly fluctuations. The results have a certain extrapolation value for the analysis of spatial scale effects. PRACTITIONER POINTS: The resolution difference was not sufficient to change the spatial pattern of the geographic phenomena. The resolution of 25 times the original was the important scale for determining spatial effects. When studying the spatial scale effects caused by differences in resolution, it was necessary to comprehensively consider various resolutions.


Nitrogen , Wetlands , Nitrogen/chemistry , China , Water Pollutants, Chemical/chemistry , Environmental Monitoring
20.
J Med Chem ; 67(7): 5866-5882, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38556760

MERTK and AXL are members of the TAM (TYRO3, AXL, MERTK) family of receptor tyrosine kinases that are aberrantly expressed and have been implicated as therapeutic targets in a wide variety of human tumors. Dual MERTK and AXL inhibition could provide antitumor action mediated by both direct tumor cell killing and modulation of the innate immune response in some tumors such as nonsmall cell lung cancer. We utilized our knowledge of MERTK inhibitors and a structure-based drug design approach to discover a novel class of macrocyclic dual MERTK/AXL inhibitors. The lead compound 43 had low-nanomolar activity against both MERTK and AXL and good selectivity over TYRO3 and FLT3. Its target engagement and selectivity were also confirmed by NanoBRET and cell-based MERTK and AXL phosphorylation assays. Compound 43 had excellent pharmacokinetic properties (large AUC and long half-life) and mediated antitumor activity against lung cancer cell lines, indicating its potential as a therapeutic agent.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , c-Mer Tyrosine Kinase/metabolism , Axl Receptor Tyrosine Kinase , Proto-Oncogene Proteins/metabolism , Lung Neoplasms/drug therapy , Cell Line, Tumor
...